SHRI RAMSWAROOP MEMORIAL UNIVERSITY

End Semester Examination (2021-22)-Odd Semester

M	. Sc.	(Ma	ath	em	atic	s) I	Ye	ar (l	Se	m)					
Course Name: Real An	alysis											Code	: MI	MA1	002
Time: 0 Hours												Ma	x Ma	arks	: 60
University Roll No.														1	
	•		•				•	•	. (To be	e fill	ed by	the	Stud	lent)

Note: Please read instructions carefully:

- a) The question paper has 03 sections and it is compulsory to attempt all sections.
- b) All questions of Section A are compulsory; questions in Section B and C contain choice.

Section A: Very Short Answer type Questions Attempt all the questions.			CLO	Marks (10)
1.	Find the limit points of the sequence $< 2 + (-1)^n >$.	BL2	CLO4	02
2.	Define "Pseudo metric space".	BL1	CLO2	02
3.	Show that the series $\sum_{n=1}^{\infty} \frac{\cos nx}{n^p}$, $p > 1$ is uniformly convergent for real values of <i>x</i> .			02
4.				02
5.	Calculate $L(P, f)$ and $U(P, f)$ if $f(x) = x^3$ on [0, 1] and $P = \{0, 1/4, 2/4, 3/4, 1\}$ be a partition of [0, 1].		CLO3	02
	tion B: Short Answer Type Questions	BL	CLO	Marks (30)
1.	Examine the following function for continuity and differentiability at $x = 0$ and $x = 1$.	BL3	CLO4	10
	$y = \begin{cases} x^2, \text{ for } x \le 0\\ 1, \text{ for } 0 < x \le 1\\ 1/x, \text{ for } x > 1 \end{cases}$			
2.	Show that the series $\sum \frac{(-1)^{n-1}}{n+x^2}$ is uniformly convergent for all value <i>x</i> .	BL3	CLO1	10
3.	Let <i>R</i> be the set of real number. Show that the function $d: R \times R \to R$ defined by $d(x, y) = x - y \forall x, y \in R$ is a metric on <i>R</i> .	BL3	CLO2	10
4.	If A and B are two subsets of a metric space (X,d) then prove that $\overline{(A \cap B)} \subseteq \overline{A} \cap \overline{B}$.	BL5	CLO2	10
5.	Prove that if P_1 and P_2 be any two partition of $[a, b]$, then $U(P_2, f, \alpha) \ge L(P_1, f, \alpha)$. that is no lower sum can exceed any upper	BL5	CLO3	10

	sum.			
Section C: Long Answer Type Questions Attempt any 01 out of 04 questions.			CLO	Marks (20)
1.	State & prove Cauchy's second theorem on limits and hence show that	BL3	CLO4	20
	$\lim_{n \to \infty} \left[\frac{2}{1} \left(\frac{3}{2} \right)^2 \left(\frac{4}{3} \right)^3 \cdots \left(\frac{n+1}{n} \right)^n \right]^{1/n} = e \text{ where } \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$			
2.	Show that the series $\sum_{n=1}^{\infty} \frac{x}{(nx+1)\{(n-1)x+1\}}$ is uniformly convergent	BL5	CLO1	20
	on any interval [a, b] where $0 < a < b$, but only point wise convergent on [0, b].			
3.	Let (X, d_1) and (Y, d_2) be two metric spaces. Prove that a function $f: X \to Y$ is continuous on X if and only if for each open set $G \subset Y$, $f^{-1}(G)$ is an open subset of X.	BL5	CLO2	20
4.	If f is monotonic on [a, b], and if α is continuous and monotonic increasing on [a, b], then show that f is RS- integrable.	BL3	CLO3	20
